Search results for "controlled release."
showing 10 items of 132 documents
Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles
2020
Abstract Background A growing awareness regarding the benefits of consumption of functional foods has resulted in the development of new food products through using bioactive compounds. Vegetable-essential oils (V-EOs) are among the most popular ingredients used for the enrichment of different food products to boost their functional properties. However, these oils are sensitive to harsh conditions such as oxidation stress and high temperatures. Recently, different micro/nanoencapsulation systems have been applied to produce suitable carriers for V-EOs to be incorporated into food formulations, which can overcome the limitation of their pure application in foods. Scope and approach Controlle…
Optimization of the enzyme power source for a nano drug delivery system fuelled by glucose in blood plasma
2019
A unique in vivo electrical pulse generator to improve membrane permeability for drugs and simultaneously facilitate self-powered nano devices for nano drug delivery systems (NDDS) was identified. The use of an unsupported biological catalyst component of the power supply was aimed at the NDDS instead of a conventional membrane electrode assembly (MEA). Self-powered carriers of drugs and prodrugs with improved controlled release capability to target areas using substrate available in biological matrices such as glucose in blood is envisaged. The experimental application implemented prototype designed chambers allowing the entry of premixed precursors and low ohm resistance due the absence o…
Can biological structures be natural and sustainable capsules?
2015
Flavor and fragrance molecules are used in many industrial fields such as food, cosmetics, tissues, pharmacy, agriculture (pheromones) etc. As most actives have a specific target and are fragile molecules, encapsulation processes have been developed for their use. These technologies are efficient to avoid loss of actives, dissemination out of the target and subsequent pollution, and to protect molecules up to their target. Several processes have been developed responding to the numerous situations encountered (e.g., protection against air, temperature, light, pH; masking or revealing sensorial properties of the molecule; release during the process, in the plate, in the mouth, etc.). However…
Loading and release of the complex [Pt(DTBTA)(DMSO)Cl]Cl·CHCl3 with the 2,2′-dithiobis(benzothiazole) ligand into mesoporous silica and studies of an…
2018
Abstract Synthetic delivery systems have great potential for overcoming problems associated with systemic toxicity that accompanies chemotherapy with the use of cisplatin and family of platinum anticancer drugs. Mesoporous silicates have been studied in context of drug delivery and drug targeting. In this paper we report the studies of loading and release of a platinum complex, [Pt(DTBTA)(DMSO)Cl]Cl∙CHCl3 (1) where DTBTA = 2,2′-dithiobis(benzothiazole), that was recently synthesized and structurally characterized. Evaluation in vitro of antitumor activity against a human breast cancer cell line (MCF-7) showed a very potent activity of complex(1). Therefore, we thought to incorporate this co…
Controlled Transdermal Release of Antioxidant Ferulate by a Porous Sc(III) MOF
2020
Summary The Sc(III) MOF-type MFM-300(Sc) is demonstrated in this study to be stable under physiological conditions (PBS), biocompatible (to human skin cells), and an efficient drug carrier for the long-term controlled release (through human skin) of antioxidant ferulate. MFM-300(Sc) also preserves the antioxidant pharmacological effects of ferulate while enhancing the bio-preservation of dermal skin fibroblasts, during the delivery process. These discoveries pave the way toward the extended use of Sc(III)-based MOFs as drug delivery systems (DDSs).
Pharmacokinetics of a sustained release formulation of PDGFβ-receptor directed carrier proteins to target the fibrotic liver
2018
Liver fibrogenesis is associated with excessive production of extracellular matrix by myofibroblasts that often leads to cirrhosis and consequently liver dysfunction and death. Novel protein-based antifibrotic drugs show high specificity and efficacy, but their use in the treatment of fibrosis causes a high burden for patients, since repetitive and long-term parenteral administration is required as most proteins and peptides are rapidly cleared from the circulation. Therefore, we developed biodegradable polymeric microspheres for the sustained release of proteinaceous drugs. We encapsulated the drug carrier pPB-HSA, which specifically binds to the PDGF beta R that is highly upregulated on a…
Mucoadhesive solid lipid microparticles for controlled release of a corticosteroid in the chronic obstructive pulmonary disease treatment.
2017
Therapeutic efficacy of inhaled drugs is limited by rapid clearance from the site of action due to absorption into systemic circulation or metabolic degradation by alveolar macrophages. Drug delivery systems offer new solutions to clinical problems especially in the treatment of pulmonary diseases. In particular, Solid Lipid Microparticles (SLM) in the range of 3-5 µm are suggested as systems for delivery of therapeutics to the lung as, because of their size, they are able to deposit into secondary bronchi, avoiding systemic absorption typical of alveolar regions. Here, we describe two novel different SLMs prepared with chitosan and alginate for sustained release of fluticasone propionate (…
Target Transportation of Auxin on Mesoporous Au/SiO2 Nanoparticles as a Method for Somaclonal Variation Increasing in Flax (L. usitatissimum L.)
2017
Development of methods for direct delivery of different bioactive substances into the cell is a promising and intensively approached area of research. It has become a subject of serious research for multidisciplinary team of scientists working in such areas as physics, biology, and biotechnology. Plant calluses were grown on medium supplemented with different nanoparticles to be used as a model for biotechnological research. Gold nanoparticles with mesoporous silica coating were used as hormone carriers, since they possess many of critical properties required for cellular transportation instrument. Some of those properties are great biocompatibility and controlled release of carried molecul…
PHEA-PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions
2015
Nanocarriers of amphiphilic polymeric materials represent versatile delivery systems for poorly water soluble drugs. In this work the technique of solvent evaporation from multiple emulsions was applied to produce nanovectors based on new amphiphilic copolymer, the α,β-poly(N-2-hydroxyethyl)-DL-aspartamide-polylactic acid (PHEA-PLA), purposely synthesized to be used in the controlled release of active molecules poorly soluble in water. To this aim an amphiphilic derivative of PHEA, a hydrophilic polymer, was synthesized by derivatization of the polymeric backbone with hydrophobic grafts of polylactic acid (PLA). The achieved copolymer was thus used to produce nanoparticles loaded with α toc…
Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot.
2018
The limited stability of catanionic vesicles has discouraged their wide use for encapsulation and controlled release of active substances. Their structure can easily break down to form lamellar phases, micelles or rearrange into multilamellar vesicles, as a consequence of small changes in their composition. However, despite the limited stability, catanionic vesicles possess an attractive architecture, which is able to efficiently encapsulate both hydrophobic and hydrophilic molecules. Therefore, improving the stability of the vesicles, as well as the control on unilamellar structures, are prerequisites for their wider application range. This study focuses on the impact of β-cyclodextrins fo…